Conjugated polymers based on electron-deficient diketopyrrolopyrrole (DPP) units have been intensively explored and applied in solution-processed organic electronic devices. Due to their good planarity and strong intermolecular π-π interactions of the conjugated backbone, DPP polymers show high carrier mobilities (> 1 cm² V⁻¹ s⁻¹) in field-effect transistors (FETs), exceeding those of amorphous silicon. The strong electron-withdrawing character of DPP units also causes DPP polymers to absorb near infrared light and their absorption spectra cover a significant part of the solar spectrum. As a result, DPP-based polymer solar cells (PSCs) can provide high photocurrents (PCEs) above 20 mA cm⁻² – a significant part of the solar spectrum. As a result, DPP-based polymer solar cells (PSCs) can provide high efficiencies (PCEs) above 20 mA cm⁻² – a significant part of the solar spectrum. As a result, DPP-based polymer solar cells (PSCs) can provide high efficiencies (PCEs) above 20 mA cm⁻² – a significant part of the solar spectrum. As a result, DPP-based polymer solar cells (PSCs) can provide high efficiencies (PCEs) above 20 mA cm⁻² – a significant part of the solar spectrum. As a result, DPP-based polymer solar cells (PSCs) can provide high efficiencies (PCEs) above 20 mA cm⁻² – a significant part of the solar spectrum.

The repeat unit of DPP polymers generally comprises four different principal components: the DPP unit, flankered by two different aromatic substituents. The new DPP unit is divided into two different aromatic substituents, DPP monomers show the first example of asymmetric DPP polymers by incorporating two different aromatic substituents. The new DPP polymers show the first example of asymmetric DPP polymers by incorporating two different aromatic substituents.

Here we focus on exploring new DPP polymers that can be solution-processed from nonchlorinated solvents. Our design strategy is based on the use of two different flanking aromatic substituents on the DPP monomer. For the synthesis of symmetrical DPP monomers, the two aromatic units, such as benzene, pyridine, thiophene (T), furan, 3-methylthiophene (MT), thieno[3,2-b][thiophene (TT), sele

DOI: 10.1002/adma.201504272

Asymmetric Diketopyrrolopyrrole Conjugated Polymers for Field-Effect Transistors and Polymer Solar Cells Processed from a Nonchlorinated Solvent

Yunjing Ji, Chengyi Xiao, Qiang Wang, Jianqi Zhang, Cheng Li,* Yonggang Wu, Zhixiang Wei, Xiaowei Zhan, Wenping Hu, Zhaohui Wang, René A. J. Janssen,* and Weiwei Li*
polymers, PDPPTT-2T and PDPPMT-2T (Scheme 1), possess a high molecular weight (>100 kg mol\(^{-1}\)) and small bandgap, and show good solubility in toluene, but at the same time afford highly crystalline thin films. Processing either of the two polymers from toluene with diphenyl ether (DPE) as additive provides bottom gate–bottom contact (BGBC) configuration FETs with a hole mobility as high as 12.5 cm\(^2\) V\(^{-1}\) s\(^{-1}\). In addition, PSCs based on the two polymers as electron donor, processed from a toluene/DPE solvent mixture, show PCEs of 6.5% with a photoresponse above 900 nm. The results demonstrate that incorporating structural asymmetry into the main chain via different aromatic substituents is an efficient strategy to achieve higher-performance FETs and PSCs of DPP polymers using non-chlorinated solution-processing.

The synthetic procedures for the DPP monomers and polymers are presented in Scheme 1. Starting from the initial precursor, ethyl 5-oxo-2-thiophen-2-yl)-4,5-dihydro-1H-pyrrole-3-carboxylate (I)\(^{[38]}\) with thiophene as aromatic group, and using TT or MT based nitriles, the asymmetric DPP compounds 2 and 3 were prepared. After N-alkylation and bromination of 2 and 3, the asymmetric dibromo-DPP monomers 4 and 5 were obtained. The polymers PDPPTT-2T and PDPPMT-2T were synthesized via Stille polymerization, in which a Pd\(_2\)(dba)\(_3\)/PPh\(_3\) catalyst and toluene/DMF (10:1) solvent mixture were added and thieno[3,2-b]thiophene-2-carbonitrile (or 4-methylthiophene-2-carbonitrile) was added dropwise at 120 °C; reflux at 120 °C, 3 h; ii) K\(_2\)CO\(_3\), 18-crown-6, and 2-octyldodecyl bromide (or 2-hexyldecyl bromide) in DMF at 120 °C, 16 h; iii) Br\(_2\) in CHCl\(_3\); iv) Stille polymerization by using Pd\(_2\)(dba)\(_3\)/PPh\(_3\) in toluene/DMF (10:1, v/v) at 115 °C.

Scheme 1. Chemical structures of the DPP polymers PDPPTT-2T and PDPPMT-2T and their synthetic routes. T, thiophene; TT, thieno[3,2-b]thiophene; and MT, methylthiophene. i) sodium/FeCl\(_3\) in 2-methyl-2-butanol at 95 °C, 2 h; i) was added and thieno[3,2-b]thiophene-2-carbonitrile (or 4-methylthiophene-2-carbonitrile) was added dropwise at 120 °C; reflux at 120 °C, 3 h; ii) K\(_2\)CO\(_3\), 18-crown-6, and 2-octyldodecyl bromide (or 2-hexyldecyl bromide) in DMF at 120 °C, 16 h; iii) Br\(_2\) in CHCl\(_3\); iv) Stille polymerization by using Pd\(_2\)(dba)\(_3\)/PPh\(_3\) in toluene/DMF (10:1, v/v) at 115 °C.
The morphology and crystal characteristics of the DPP polymer films were further investigated by atomic force microscopy (AFM) image and 2D grazing-incidence wide-angle X-ray scattering (2D-GIWAXS), as shown in Figure 3 and Figure S10 in the Supporting Information. The polymer films processed from toluene/DPE solutions show crystalline domains and possess a higher surface roughness (Supporting Information) (2.13 and 1.38 nm for PDPPTT-2T and PDPP2T-T) than the films from toluene solution (Supporting Information) (0.86 and 0.71 nm for PDPPTT-2T and PDPP2T-T). 2D-GIWAXS patterns show that the polymer films spin coated from toluene/DPE and annealed at 120 °C are highly ordered and highly crystalline, as evidenced by the series of reflections associated with the lamellar packing of the alkyl chains. Distinct (h00) diffraction peaks up to the fourth order can be observed in the out-of-plane direction (Figure 3a,b) for both polymers. The highest intensity (100) peaks of PDPPTT-2T and PDPP2T-T at q_y = 0.30 and 0.34 Å⁻¹ correspond d-spacings of 20.9 and 18.5 nm, respectively (Supporting Information) and Table S4, Supporting Information. The distinct (010) diffraction peak in the in-plane direction of the PDPPTT-2T evidences π−π stacking (spacing: ca. 3.63 Å). PDPPMT-2T shows a less pronounced (010) diffraction peak also in the in-plane direction with a π−π stacking distance of ca. 3.9 Å and a low-intensity (100) peak can also be observed. This indicates that PDPPMT-2T has less preferential order than PDPPTT-2T, although PDPPMT-2T shows a much higher mobility than PDPPTT-2T. High mobilities for less-ordered organic semiconductors have also been reported in other high-molecular-weight conjugated polymers.²¹,⁴⁰ Semicrystalline conjugated polymers contain ordered and disordered regions in thin films. For high-mobility polymers it has been suggested that charge transport is predominantly occurring along the backbone and requires only occasional intermolecular hopping through short π-stacking bridges such that short-range intermolecular aggregation is sufficient for efficient long-range charge transport.⁴¹,⁴² Compared to PDPPTT-2T, PDPPMT-2T may show better aggregation in the disordered regions, explaining the higher mobility.

The two polymers exhibit both (100) and (010) diffraction peaks in the out-of-plane direction when processed from toluene solution. We attribute this to the absence of a clear preference for edge orientation of the polymer chains on the surface (Figure S11, Supporting Information). AFM and 2D-GIWAXS results shows that the polymer films fabricated from pure toluene solution exhibit less crystallinity and preferential orientation, which is consistent with their lower mobilities compared to films fabricated from toluene/DPE solutions.

The two polymers further applied as electron donors in bulk heterojunction photovoltaic cells after blending with phenyl-C₆₁-butyric acid methyl ester (PCBM) as electron acceptor in an inverted device configuration with an ITO/ZnO electrode for electron collection and a MoO₃/Ag electrode for hole collection. The photoactive layers were carefully optimized with respect to the solvent used for spin coating, solvent additive, ratio of donor to acceptor, and thickness, as summarized in Table S5–S8 and Figure S12–S14 in the Supporting Information. The optimized polymer-fullerene weight ratio is 1:2. The J−V characteristics and external quantum efficiency (EQE) for the optimized solar cells are shown in Figure 4a,b and Table 2. The J_{sc} were determined by integrating the EQE with the AM1.5G spectrum. PDPPTT-2T:PCBM cells had a PCE of 5.1% with J_{sc} = 13.5 mA cm⁻², V_{oc} = 0.61 V, and fill factor (FF) = 0.63 when the active layer is spin coated from CHCl₃ with 10% o-DCB as additive. The PCE increased to 6.1% due to

Table 1. Field-effect hole mobilities of the DPP polymers in a BAGC configuration. The polymer thin films were thermally annealed at 120 °C for 2 h before measurement.

<table>
<thead>
<tr>
<th>Polymer</th>
<th>Solvent</th>
<th>μₑ [cm² V⁻¹ s⁻¹]</th>
<th>V_t</th>
<th></th>
<th>l_on/l_off</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Avg</td>
<td>Max</td>
<td></td>
<td>[V]</td>
</tr>
<tr>
<td>PDPPTT-2T</td>
<td>CHCl₃</td>
<td>2.06</td>
<td>2.17</td>
<td>−10.8</td>
<td>1 × 10⁻⁷</td>
</tr>
<tr>
<td></td>
<td>Toluene</td>
<td>1.96</td>
<td>2.07</td>
<td>−5.2</td>
<td>8 × 10⁻⁶</td>
</tr>
<tr>
<td></td>
<td>Toluene/DPE (3%)</td>
<td>5.24</td>
<td>5.87</td>
<td>−7.5</td>
<td>2 × 10⁻⁴</td>
</tr>
<tr>
<td>PDPPTM-2T</td>
<td>CHCl₃</td>
<td>5.22</td>
<td>5.28</td>
<td>−1.7</td>
<td>4 × 10⁻⁴</td>
</tr>
<tr>
<td></td>
<td>Toluene</td>
<td>4.68</td>
<td>4.87</td>
<td>−4.6</td>
<td>9 × 10⁻⁶</td>
</tr>
<tr>
<td></td>
<td>Toluene/DPE (2%)</td>
<td>10.3</td>
<td>12.5</td>
<td>−2.9</td>
<td>7 × 10⁻⁴</td>
</tr>
</tbody>
</table>
much higher $J_{sc} = 15.8$ mA cm$^{-2}$ when using toluene with 3% DPE as additive. For PDPPMT-2T:[70]PCBM cells, the PCE was 5.8% by using CHCl$_3$ with 2% DPE as additive, which increased to 6.5% when spin coating from toluene/DPE. This was mainly due to the enhancement of J_{sc} from 15.1 to 15.8 mA cm$^{-2}$ and FF from 0.61 to 0.66. The two cells processed from toluene/DPE solution show a broad photoresponse from 300 nm to 900 nm with a maximum EQE over 0.55 in the near-infrared spectral region where the polymer absorbs light (Figure 4b). The photoactive layers were further investigated by 2D-GWAXS and transmission electron microscopy (TEM). Clear (100) and (200) diffraction peaks can be observed in out-of-plane direction, but the higher order diffraction peaks are no longer visible in the blend (Figure 4c,d, and Figure S16, Supporting Information). This indicates that the crystallinity of DPP polymers is reduced in the blends with [70]PCBM compared to the pure films. Accordingly, the diffraction (010) peak in the blend films can be found in out-of-plane direction but with low intensity. The diffraction halo observed near $q = 1.32$ Å$^{-1}$ is attributed to [70]PCBM. TEM images based on the polymer–fullerene systems spin coated from toluene/DPE solution reveal that both of PDPPTT-2T and PDPPMT-2T
present fibril-like nanostructures with a diameter below 10 nm, similar to other DPP-fullerene blend films.\[19\] Because the radius of these polymer fibrils is on the order of the exciton diffusion length, most excitons will reach the donor/acceptor interface to generate charges and improve the PCE.

Interestingly, solar cells fabricated from toluene/DPE exhibit higher J_{sc}s, FFs, and PCEs than those from CHCl$_3$ with o-DCB or DPE as additive, which may originate from the morphology difference in blend films. AFM results show that polymer:PCBM films fabricated from toluene/DPE solution have a higher RMS roughness than films from CHCl$_3$ solution (Figure S17, Supporting Information), indicating more micro-phase separation in blend films. 2D-GIWAXS results also reveal that the blend films spin coated from toluene/DPE have strong (100) diffraction peaks (Figure 4c,d) as compared to those spin coated from CHCl$_3$ mixture solution (Figure S18a–d, Supporting Information), which confirms that the polymers in blend films spin coated from toluene/DPE have improved aggregation and crystallinity. Further analysis by TEM shows that the blend films fabricated from CHCl$_3$ with additive contain large fibril-like structures (PDPPTT-2T) (Figure S18e, Supporting Information) or less-detectable fibers (PDPPMT-2T) (Figure S19f, Supporting Information), both of which is not beneficial for charge generation. As indicated in the solubility test, the polymers form gel-like structures in toluene solution, indicating pre-aggregation before solution-processing. This may responsible for the better aggregation of polymers in blending films and achieve high PCEs when solution-processed from toluene/DPE.

In conclusion, two asymmetric DPP polymers with different aromatic substituents were designed, synthesized, and applied in FETs and PSCs. The new polymers provide high molecular weights, small bandgaps, and good solubility in toluene. The polymers have hole mobilities as high as 12.5 cm2 V$^{-1}$ s$^{-1}$ in FETs due to their high crystallinity in thin films when processed from toluene/DPE solution. With the same solvent combination, photovoltaic devices based on these two polymers reach PCEs of 6.5% with a photoresponse up to 900 nm. The results demonstrate that DPP polymers that have an asymmetry in the flanking aromatic substituents form a successful approach toward semiconducting materials that can be processed from nonchlorinated solvents, while maintaining a high performance in FETs and PSCs.

Experimental Section

The organic FETs were fabricated on a commercial Si/SiO$_2$/Au substrate purchased from First MEMS Co. Ltd. A heavily N-doped Si wafer with an SiO$_2$ layer of 300 nm served as the gate electrode and dielectric layer, respectively. The Ti (2 nm)/Au (28 nm) source–drain electrodes were sputtered and patterned by a lift-off technique. Before deposition of the organic semiconductor, the gate dielectrics were treated with OTS in a vacuum oven at a temperature of 120 °C, forming an OTS self-assembled monolayers. The treated substrates were rinsed successively with hexane, chloroform, and isopropyl alcohol. Polymer thin films were spin coated on the substrate from solution with a thickness of around 30–50 nm. The devices were thermally annealed at 120 °C in a high-vacuum chamber (ca. 10$^{-3}$ Pa) for 2 h, cooled down, and then moved into a glove box filled with N$_2$. The devices were measured on a Keithley...
4200 SCS semiconductor parameter analyzer at room temperature. The mobilities were calculated from the saturation region with the following equation:

$$\mu = \frac{I_{SD}}{W L C V_G V_T}$$

where I_{SD} is the drain–source current, W is the channel width (1400 µm), L is the channel length (30 µm for PDPPTT-2T and 40 µm for PDPPMT-2T), μ is the field-effect mobility, C_i is the capacitance per unit area of the gate dielectric layer, and V_G and V_T are the gate voltage and threshold voltage, respectively. This equation defines the important characteristics of electron mobility (μ), on/off ratio (I_{on}/I_{off}), and threshold voltage (V_T), which could be deduced by the equation from the plot of current–voltage.

Photovoltaic devices with inverted configuration were made by spin coating a ZnO sol–gel at 4000 rpm for 60 s onto precleaned, patterned ITO substrates. The photoactive layer was deposited by spin coating a chloroform (or toluene) solution containing DPP polymers and [70]PCBM and the appropriate amount of processing additive such as DIO, o-DCB, or DPE in air. MoO$_3$ (10 nm) and Ag (100 nm)

Table 2. Characteristics of optimized inverted solar cells of the DPP polymers with [70]PCBM.

<table>
<thead>
<tr>
<th>Polymer</th>
<th>Solvent</th>
<th>Thickness [nm]</th>
<th>J_{sc} a) [mA cm$^{-2}$]</th>
<th>V_{oc} [V]</th>
<th>FF</th>
<th>PCE [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDPPTT-2T a)</td>
<td>CHCl$_3$ / o-DCB (10%)</td>
<td>100</td>
<td>13.5</td>
<td>0.61</td>
<td>0.63</td>
<td>5.1</td>
</tr>
<tr>
<td></td>
<td>Toluene/DPE (3%)</td>
<td>90</td>
<td>15.8</td>
<td>0.60</td>
<td>0.60</td>
<td>6.1</td>
</tr>
<tr>
<td>PDPPMT-2T a)</td>
<td>CHCl$_3$ / DPE (2%)</td>
<td>70</td>
<td>15.1</td>
<td>0.63</td>
<td>0.61</td>
<td>5.8</td>
</tr>
<tr>
<td></td>
<td>Toluene/DPE (2%)</td>
<td>65</td>
<td>15.8</td>
<td>0.62</td>
<td>0.66</td>
<td>6.5</td>
</tr>
</tbody>
</table>

a) J_{sc} as calculated by integrating the EQE spectrum with the AM1.5G spectrum; b) Weight ratio of the polymers to [70]PCBM is 1:2.
were deposited by vacuum evaporation at ca. 4×10^{-5} Pa as the back electrode.

The active area of the cells was 0.04 cm2. The J–V characteristics were measured by a Keithley 2400 source meter unit under AM1.5G spectrum from a solar simulator (EnliTech model SS-FS-3A). Solar simulator illumination intensity was determined at 100 mW cm$^{-2}$ using a monocrystal silicon reference cell with KG5 filter. Short-circuit currents under AM1.5G conditions were estimated from the spectral response and convolution with the solar spectrum. The EQE was measured by a Solar Cell Spectral Response Measurement System QE-R3011 (Enli Technology Co., Ltd.). The thickness of the active layers in the photovoltaic devices was measured on a Veeco Dektak XT profilometer.

TEM was performed on a Tecnai G2 Sphera transmission electron microscope (FEI) operated at 200 kV. 2D-GIWAXS measurements were conducted on a Xenocs-SAXS/WAXS system with X-ray wavelength of 1.5418 Å. The film samples were irradiated at a fixed angle of 0.2°. All film samples were prepared by spin coating toluene/DPE solutions on Si substrates. The pure polymer thin films were annealed at 120 °C for 10 min before measurement.

Supporting Information
Supporting Information is available from the Wiley Online Library or from the author.

Acknowledgements
Y.J., C.X., and Q.W. contributed equally to this work. The authors thank Ralf Bovee at Eindhoven University of Technology (TU/e, Netherlands) for GPC analysis and Jacobus J. van Franeker (TU/e) for TEM measurements. This work was supported by the Recruitment Program of Global Young Experts of China. The work of Y.Q. Liu was supported by the Recruitment Program of Global Youth Experts of China. The work of Q.W. forms part of the research program of the Dutch Polymer Institute (DPI), project #762. The work was further supported by the National Natural Science Foundation of China (21574138, 21474026), the Strategic Priority Research Program (XDB12010100) of the Chinese Academy of Sciences. The research forms part of the Solliance OPV program and has received funding from the Ministry of Education, Culture and Science (Gravity program 024.001.035) of the Netherlands.

Received: August 31, 2015
Revised: October 5, 2015
Published online:

